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CMTX1 patients’ cells present genomic
instability corrected by CamKII inhibitors
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Abstract

Background: We previously described that fibroblasts from animal models of CMTX1 present genomic instability
and poor connexon activity. In vivo, these transgenic mice present motor deficits. This phenotype could be
significantly reverted by treatment with (CamKII) inhibitors. The objective of this study is to translate our findings to
patients.

Methods: We cultured fibroblasts from skin biopsies of CMTX1 patients and analyzed cells for genomic instabilty,
connexon activity, and potential correction by CamKII inhibitors.

Results: The phenotypic analysis of these cells confirmed strong similarities between the GJB1 transgenic mouse
cell lines and CMTX1 patient fibroblast cell lines. Both present mitotic anomalies, centrosome overduplication, and
connexon activity deficit. This phenotype is corrected by CamKII inhibitors.

Conclusions: Our data demonstrate that fibroblasts from CMTX1 patients present a phenotype similar to transgenic
lines that can be corrected by CamKII inhibitors. This presents a track to develop therapeutic strategies for CMTX1
treatment.
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Background
We recently created and analyzed transgenic mouse
lines that expressed a human mutated GJB1 [1] (i.e., the
gene involved in the X-linked form of Charcot-Marie-
Tooth disease [2]), coding for connexin 32 (Cx32), a
component of gap junctions [3,4]. We demonstrated that
Cx32 is involved in mitotic stability, as transgenic cells
present mitotic instability (i.e., aneuploidy, or centro-
some overduplication). Both our study and the European
Mitocheck project (www.mitocheck.org) observed that a
lower Cx32 expression or expression of a mutated iso-
form resulted in perturbation of cell division [1,5].
Moreover, in a recent article [6], we suggested that this

instability is due to CamKII overexpression, thereby lead-
ing to centrosome overduplication. In 1997, Torok et al.
[7] identified two calmodulin-binding domains in Cx32
and provided evidence that calmodulin may function as
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an intracellular ligand, regulating Ca2+-dependent inter-
cellular communication across gap junctions. Finally Dodd
et al. [8] demonstrated that the physical proximity be-
tween Cx32 and Calmodulin Kinase II (CamKII) had a
physiological role. It was thus likely that pathological mu-
tations in Cx32, associated to CMTX1, resulted in mitotic
instability through CamKII overexpression that led to
centrosome overduplication. Furthermore, we demon-
strated that treatment with CamKII inhibitors [6]
(KN62 or KN93 [9]) resulted in a partial but significant
rescue of abnormal centrosome overduplication, mi-
totic instability, and connexon activity. In addition,
in vivo treatment of CMTX1-related transgenic mice
with KN93 improved their locomotor performance on
the rotarod.
However, these data were either obtained from trans-

genic mouse lines (i.e., our findings) or human trans-
fected cells (i.e., the Mitocheck project). We could thus
not presume that these findings could be translated to
CMTX1 patients. We thus collected and analyzed fibro-
blasts from the skin biopsies of five CMTX1 patients
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Table 1 Results of nerve conductions studies

mNCV CMAP

Patient 1 39 m/s 3.4 mV

Patient 2 45 m/s 4.0 mV

Patient 3 32 m/s 1.5 mV

Patient 4 32.4 m/s 5.1 mV

Patient 5 34.1 m/s 1.4 mV

Electrophysiological evaluations were performed on 5 patients with CMTX1,
with clinical presentations described in materials and methods. Results of
nerve conduction studies in terms of median nerve motor conduction velocity
(NCV) and compound muscle action potential amplitudes (CMAP) are
presented in the table.
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that presented three different mutations. Phenotypic
analysis of the patient’s cells were compared to pheno-
typic presentation of the cells from CMTX animal
models. Phenotypic correction using CamKII inhibitors
was also tested.

Methods
Patients
Patients were evaluated at the University Hospital of
Muenster. The inclusion criteria for this study required
a clinical phenotype consistent with CMT and a genetic
diagnosis of CMTX1. Nerve conduction studies (NCS)
were performed according to standard procedures.

Standard protocol approvals, registrations, and patient
consents
All biological materials family history as well as medical
and neurophysiological reports were obtained under ap-
propriate informed consent of the patients or their legal
guardians. The local ethics committees of the University
of Muenster approved the study.
Figure 1 Patients fibroblasts have been cultured as described in methods.
microscope. Examples of abnormal nuclei observed in cells of CMTX1 patie
(E and F). Non disjunction (G and marc).
Mutations and clinical presentation of patients
Patient 1 is a female with the mutation R215W on the
gene Gjb1. Clinically, she has distal pareses of arms and
legs, gait ataxia and distal sensory loss. Age of onset:
22 years. Nerve conduction studies showed an inter-
mediate neuropathy.
Patient 2 is the sister of patient 1, with the same

mutation R215W. Clinically, she shows pareses of
foot dorsal extension, finger abduction and exten-
sion on both sides, distal symmetric sensory loss
and absent achilles tendon reflexes. Age of onset:
25 years.
Patient 3 is a male with a mutation R142W. He

presents muscle atrophies and pareses of hands and
calves, foot drop, distal symmetrical hyp- and
dysesthesia of legs. Tendon reflexes are reduced in
the arms, absent in legs. Age of onset: ca. 15 years.
Nerve conduction studies showed an intermediate
neuropathy.
Patient 4 is a female with the mutation V181M. She

presents pareses of foot dorsiflexion and small hand
muscles, neuropathic pain in feet and hands, distal sym-
metric hyp- and dysesthesia of feet and fingertips.
Tendon reflexes reduced in the arms, absent in legs. Age
of onset: ca. 25 years. Nerve conduction studies showed
an intermediate neuropathy.
Patient 5 is a male, the son of patient 4 with the same

mutation V181M. He presents pareses of foot dorsiflex-
ion, plantar flexion, mild pareses of finger abduction and
hypesthesia of feet. He shows high arched feet and ham-
mer toes. Tendon reflexes are absent in arms and legs.
Age of onset: 16 years.
Results of nerve conduction studies are presented in

Table 1.
Nuclei have been stained with DAPI and captured using ligth
nts. Normal nuclei (A, B), Abnormal shape (C and D), Polylobbed



Figure 2 Number of nuclei with anomalies (A) and percentage of
cells with an abnormal number of centrosomes (B) has been
evaluated in cells of patients without or with treatment with an
inhibitor of CamKII (KN93).
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Human fibroblast cell culture
Fibroblast cell cultures were performed as described
[10]. A 1 mm skin punch biopsy was transferred to
DMEM supplemented with 20% fetal calf serum, penicil-
lin/streptomycin and glutamine (D20 medium). The
tissue was transferred to a 60 mm plastic Pasteur dish
and submersed in D20 medium at standard conditions.
After a lawn of fibroblasts had grown, biopsy tissues
were removed and the cultures were grown and pas-
saged 3 times before assays were performed.

Western blotting
Cells were lysed in RIPA buffer (50 mM Tris-Cl pH 7.4,
1% NP40, 0.25% sodium deoxycholate, 0.1% SDS,
150 mM sodium chloride) supplemented with protease
and phosphatase inhibitors. The same amounts of protein
from each sample were resolved under denaturing and re-
ducing conditions on 4-12% NuPAGE gels (Invitrogen)
and transferred to polyvinylidene fluoride membranes.
Immunoreactive proteins were revealed by enhanced
chemiluminescence with ECL (Perkin-Elmer). An anti-
body against phosphorylated CamKII (Cell Signaling,
catalog number: 3361) was used.

Centrosome labelling
Cells were grown on glass coverslips for 24 h to allow
cultures to reach 80% confluence. To measure the num-
ber of centrosomes, cells were fixed with 4% PFA,
permeabilized with methanol at −20°C for 8 min and
blocked with 0.5% Triton X-100 in PBS for 30 min at
RT. To detect γ-tubulin, cells were incubated overnight
at 4°C with a mouse anti-γ-tubulin antibody (GTU-88;
Sigma) diluted 1/1000 in PBS containing 0.1% milk and
0.05% Triton X-100. After washing, the cells were in-
cubated for 1 h at RT with Cy3-conjugated goat anti-
mouse IgG secondary antibody (Caltag Laboratories)
diluted 1/2000 in PBS containing 0.1% milk and 0.05%
Triton X-100. The preparations were counterstained
with DAPI in Vectashield mounting medium (Vector
Laboratories). Fluorescent images were acquired with a
microscope (Leica DMR) equipped with a PL APO
objective.

Connexon activity
One hundred thousand cells were cultured as described
above for one day with or without CamKII inhibitors
(KN62 or KN93 at a final concentration of 10 μM). Lucifer
yellow (LY) was added to the medium (final concentra-
tion: 110 μM) and incubated for two hours. Fluorescence
was recorded using a Perkin Elmer Victor 4 microplaque
reader (excitation: 405 nM, emission: 535 nM).

Statistics
Statistical analysis was performed using Prism v5.0.
Mann–Whitney and chi-square tests were used for trend
analysis. The significance threshold was setted at p < 0.05.

Results and discussion
Nuclear anomalies
As Schwann cell cultures could not be obtained from
patients for practical and ethical reasons, we isolated fi-
broblasts from skin biopsies. Various parameters were
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analyzed. Patient fibroblasts did not show significant
levels of polyploidy (not shown). However, we ob-
served an abnormal number of nuclei presenting
anomalies (Figure 1). Nuclear anomalies have been de-
scribed and classified by the Mitocheck project: abnor-
mal shape (C,D), polylobbed (E,F), two unsepared
nuclei (G,F) and others [5]. We next quantified the
percentage of these abnormal nuclei in CMTX1 patient
fibroblasts, and compared the results to human fibro-
blasts from individuals that did not present CMTX1.
We observed only a few abnormal nuclei in reference
individuals (i.e., less than 3%), whereas approximately
15% of nuclei from CMTX1 patients had anomalies
(Figure 2A). We have previously showed that CamKII
activity was increased in transgenic cells and that
inhibitors were able to reduced anomalies in GJB1
transgenic cell lines. We thus evaluated CamKII acitv-
ity in patient fibroblasts, using an antibody raised
against phosphorylated CamKII, in patients fibroblasts.
We could observed, in Figure 3C, that CamKII acitivty
is overstimulated in patient fibroblasts (Figure 3C).
According to these observations, fibroblasts from
CMTX1 patients were treated in vitro with the CamKII
inhibitor KN93 at a concentration of 10 μM. We found
that KN93 was able to significantly reduce the amount
of abnormal nuclei in fibroblasts from each CMTX1
patient, which supports our previous work on trans-
genic mice, (Figure 2A).
A

C

1 2

Figure 3 Patients fibroblasts have been cultured and centrosomes stained
fluorescence microscope. Examples are presented in Figure 3A and B. Sam
Western blats have been performed and probed using an antibody raised
from patient 1 ; 3, cells from patient 3 ; cells from patient 5.
Centrosome overduplication
Cells from five transgenic lines created in the laboratory
present centrosome overduplications that are linked to
mutations in GJB1 [6]. We thus evaluated centrosome
duplication in normal and CMTX1 fibroblasts, treated
or untreated with the CamKII inhibitor KN93. We ob-
served centrosome overduplication in the fibroblasts
from CMTX1 patients, which supports the findings of
the study on GJB1 transgenic mice (Figures 3A, B, and
2A). As expected, this overduplication was significantly
corrected by KN93 treatment (10 μM ; Figure 2B).

Connexon activity
Impairment of connexon activity is considered the pri-
mary cause of the CMTX1 phenotype in humans [11].
We thus evaluated the connexon activity of the fibro-
blasts from CMTX1 patients, using an assay developed
in our laboratory [6] which is based on the measurement
of Lucifer Yellow internalization that requires connexon
activity. Connexon activity was found to be lower in
CMTX1 patient fibroblasts as compared to healthy con-
trols (Figure 4). After treatment with KN93, the con-
nexon activity significantly improved in the fibroblasts of
each CMTX1 patient (Figure 4).

Conclusions
In conclusion, the fibroblasts from five CMTX1 patients
showed the same cellular phenotype that we described
B

3 4

as described in Methods. Pictured have been captured using a
e cells have been lyzed, and analyzed usinh polyacrylamide gels.
against the phosporylated form of CamKII (2C). 1, normal cells ; 2, cells



Figure 4 Connexon activity of patients cells (patient 1 to 5, A, B, C, D and E), and control human fibroblasts, has been evaluated using internalisation
of Lucifer Yellow (LY). Fluorescence of LY has been recorded corresponding to cells treated or not with KN93.

Saleh et al. Orphanet Journal of Rare Diseases  (2015) 10:56 Page 5 of 6



Saleh et al. Orphanet Journal of Rare Diseases  (2015) 10:56 Page 6 of 6
in GJB1 transgenic mouse models created in the labora-
tory [1,6], including nuclei anomalies, centrosome overdu-
plication, and impaired connexon activity. As suggested
by Matsumoto and Maller [12], centrosome duplication is
linked to CamKII activity. In CMTX1 mice, we have
already shown that CamKII inhibitors can revert the
phenotype linked to mutations in the GJB1 gene. These
results suggest that the phenotype observed in the fibro-
blasts from CMTX1 patients can also be corrected, at
least partially, by treatment with a CamKII inhibitor.
Waggener et al. recently demonstrated that CamKII is

involved in myelination mechanisms in the central
nervous system (CNS) [13]. They demonstrated that
perturbation of CamKII beta is associated with anomal-
ies in CNS glial celll maturation, is involved in anomalies
of actin skeleton, and is associated with myelin anomal-
ies. Recently, we demonstrated that the locomotor
behaviour of GJB1 mutated mouse models of CMTX1
can be improved by treatment with CamKII inhibitors
[6]. In conclusion, the fibroblasts of human CMTX1 pa-
tients present the same phenotype as the fibroblasts of
mouse models. Moreover, the same molecule (KN93)
partially corrects the cellular phenotype of human and
mouse fibroblasts as well as locomotor behaviour in
mouse models. These findings provide a translational
link from the murine to the human system. Although it
is still too early to directly apply our results to human
patients, for the first time, our results show a potential av-
enue for therapeutic approaches to CMTX1 treatment.
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