Autres travaux

The long-lasting love affair between the budding yeast Saccharomyces cerevisiae and the Epstein-Barr virus

Biotechnology Journal, 2015, in press

The Epstein-Barr gammaherpesvirus (EBV) is the first oncogenic virus discovered in human. Indeed, EBV has been known for more than 50 years to be tightly associated with certain human cancers. As such, EBV has been the subject of extensive studies aiming at deciphering various aspects of its biological cycle, ranging from the regulation of its genome replication and maintenance to the induction of its lytic cycle, including the mechanisms that allow its immune evasion or that are related to its tumorogenicity. For more than 30 years the budding yeast Saccharomyces cerevisiae has fruitfully contributed to a number of these studies. The aim of this article is to review the various aspects of EBV biology for which yeast has been instrumental, and to propose new possible applications for these yeast-based assays, as well as the creation of further yeast models dedicated to EBV. This review article illustrates the tremendous potential of S. cerevisiae in integrated chemobiological approaches for the biomedical research.

Design and validation of a homogeneous time-resolved fluorescence cell-based assay targeting the ligand-gated ion channel 5-HT3A

Analytical Biochemistry 2015, 484, 105-112

Ligand-gated ion channels (LGICs) are considered as attractive protein targets in the search for new therapeutic agents. Nowadays, this strategy involves the capability to screen large chemical libraries. We present a new Tag-lite ligand binding assay targeting LGICs on living cells. This technology combines the use of suicide enzyme tags fused to channels of interest with homogeneous time-resolved fluorescence (HTRF) as the detection readout. Using the 5-HT3 receptor as system model, we showed that the pharmacology of the HALO-5HT3 receptor was identical to that of the native receptor. After validation of the assay by using 5-HT3 agonists and antagonists of reference, a pilot screen enabled us to identify azelastine, a well-known histamine H1 antagonist, as a potent 5-HT3 antagonist. This interesting result was confirmed with electrophysiological experiments. The method described here is easy to implement and could be applicable for other LGICs, opening new ways for the screening of chemical libraries.

Graphical abstract

New PDE4 inhibitors based on pharmacophoric similarity between papaverine and tofisopam

Bioorganic & Medicinal Chemistry Letters 2011, 21, 6567-6572

Pharmacophoric comparison between papaverine and tofisopam led to identify three new series of micro- to sub-micromolar inhibitors of phosphodiesterase-4, including 7,8-dialkoxy-2,3-benzodiazepin-4-one derivatives, 7,8-dialkoxy-1,4-benzodiazepin-2-one derivatives, and dialkoxybenzophenone derivatives.

Graphical abstract : New PDE4 inhibitors based on pharmacophoric similarity between papaverine and tofisopam